Researchers have figured out how mosquitoes pick up our scents. In a paper just out in the journal Cell, a team led by Anandasarkar Ray at the University of California, Riverside, identified one important class of neurons in mosquitoes that detect our skin odors. The work has implications for developing more effective mosquito traps and repellants in places plagued with mosquito-borne diseases, such as malaria and dengue.
Mosquitoes follow carbon dioxide emitted when we breathe, and, once they get close enough, dive toward our bare skin, attracted by the odors given off there. While the neuron that picked up carbon dioxide had been known, the identity of the neuron or neurons with odor receptors that attracted mosquitoes to human skin scents remained unknown.
Ray says that, for many years, he and his colleagues focused their search for human-skin odor receptors on the complex mosquito antenna, which express numerous members of an olfactory receptor gene family thought to be involved in picking up scents. They ignored the simpler maxillary palp organs, small fingerlike sensory structures, that contain the carbon dioxide receptors. Conventional wisdom was that the carbon dioxide receptor “was narrowly tuned, responding primarily to carbon dioxide,” says Ray.
So imagine the investigators’ surprise when they discovered “the carbon dioxide receptor is an extremely sensitive detector of several skin odorants,” says Ray. “In fact, it is far more sensitive to some of these odor molecules when compared to carbon dioxide.”
The investigators used a variety of techniques, including the use of a wind tunnel filled with mosquitoes flying toward beads coated with a human foot odor, to establish that the carbon dioxide receptor neuron, called cpA, also picked up foot odors.
To see if cpA can be targeted by chemicals that might be developed as mosquito traps, the investigators next screened nearly half a million compounds to find ones that either activated or shut down cpA. They eventually settled on two compounds: ethyl pyruvate, a fruity-smelling cpA inhibitor used as a flavor agent in food, and cyclopentanone, a minty-scented cpA activator used as a flavor and fragrance agent. Ethyl pyruvate substantially reduced the mosquitoes’ attraction toward a human arm, in effect acting as a repellent. Cyclopentanone, meanwhile, lured mosquitoes, so it could be used as an attractant in a trap.
Ray’s group earlier had identified neurons in insects that detect the repellent DEET. That work, explains Ray, can help researchers devise ways to repel mosquitoes. The current work described in the Cell paper can be used to come up with ways to trap mosquitoes or mask the cues that attract them to humans.
Ray already has moved toward developing applications of the latest work. “Parts of this carbon dioxide receptor technology has been licensed to an insect research company called Olfactor Labs hat I helped set up in 2010,” he says. “This research company is performing additional discovery and large-scale screening of the carbon dioxide receptor.” The Kite Patch, a sticker that repels mosquitoes, is one of the company’s products.